Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Известные экологи

Владимир Вернадский

Эдуард Зюсс

 

Джеймс Лавлок

Свойства экологических систем.

 Наиболее важные свойства экосистем являются следствием иерархической организации уровней жизни. По мере объединения подмножеств в более крупные у образующихся систем возникают качественно новые эмерджентные свойства, отсутствующие на предыдущем уровне. Таким образом, экосистема обладает не только суммой свойств, входящих в нее подсистем, но характеризуется  собственными, присущими только ей свойствами.

Взаимодействие автотрофных и гетеротрофных процессов является наиболее важной функцией любых экосистем. В течение значительного геологического периода (кембрия 600 млн 1 млрд лет назад), небольшая, но заметная частъ синтезируемого органического вещества не расходовалась, а сохранялась и накапливалась в осадках. Преобладание скорости синтеза над скоростью разложения органических веществ явилось причиной уменьшения содержания углекислого газа и накопления кислорода в атмосфере. Это подтверждает тот факт, что состав атмосферы Земли резко отличается от условий на других планетах Солнечной системы.  В 1979 г. Лавлок предположил, что  состав атмосферы Земли в отсутствии биосферы соответствовал составу атмосферы Марса или Венеры. Это видно из таблицы.

Таблица

Сравнение состава атмосферы и. температурных условий на Земле и других планетах (по Ю Одуму, 1986)

Планета

Содержание газов в

 атмосфере, % об.

Температура поверхности, оС

СО2

N2

О2

Марс

95

2,7

0,13

53

Венера

98

1,9

Следы

477

Земля

Без жизни

98

1,9

Следы

290

С биосферой

0,03

78,09

20,93

13

 

Зеленые организмы сыграли основную роль в формировании геохимической среды Земли, благоприятной для существования других организмов. Значительное накопившееся количество кислорода сделало возможными появление и эволюцию высших форм жизни. Примерно 300 млн лет назад отмечался особенно большой избыток органической продукции, что привело к образованию горючих ископаемых, за счет накоплений которых  человек совершил промышленную революцию. За последние 60 млн лет в атмосфере выработалось относительно постоянное соотношение кислорода (21 %) и углекислого газа (0,03 %)

Установившееся соотношение скоростей автотрофных и гетеротрофных процессов может служить одной из главных функциональных характеристик экосистем. Отношение концентраций СО2 и О2 отражает соотношение скоростей этих процессов в экосистемах, т. е. соотношение аккумулированной продуцентами и рассеянной консументами энергии. При этом в разных экосистемах баланс этих процессов может быть либо положительным, либо отрицательным. Существуют системы с преобладанием автотрофных процессов, т. е. с положительным биотическим балансом (тропический лес, мелкое озеро, агроэкосистема). В других наоборот, преобладают гетеротрофные процессы, т. е. имеет место отрицательный баланс (горная река, город).

Деятельность человека, который значительно, ускоряет процессы разложения, сжигая органическое вещество, накопленное в горючих ископаемых, ведя интенсивное сельское хозяйство, ускоряющее разложение гумуса; уничтожая леса и сжигая древесину. В воздух выбрасывается большое количество СО2 до этого связанного в угле, нефти, торфе, древесине, гумусе почв.

Соотношение СО и О2 в атмосфере характеризует баланс автотрофных и гетеротрофных процессов в биосфе ре в целом. Установившееся равновесие автотрофных и гетеротрофных процессов на Земле поддерживается благодаря способности экосистем и биосферы к саморегуляции.

         Саморегуляция экосистем обеспечивается внутренними механизмами, устойчивыми связями между их компонентами, трофическими и энергетическими взаимоотношениями. Сообщество организмов и физическая среда развиваются и функционируют как единое целое. Об этом прежде всего свидетельствует состав атмосферы Земли с уникально высоким содержанием кислорода. Умеренные температуры и, благоприятные для жизни условия кислотности обеспечены ранними формами жизни. Взаимодействие растений и микроорганизмов сглаживает колебания физических факторов. Например, аммиак, выделяемый организмами, поддерживает в воде, почвах и осадках величину рН, необходимую для их жизнедеятельности. Без этого значения рН могли бы стать такими низкими, что организмы не выжили бы в этих условиях.

Экосистемы имеют кибернетическую природу  и характеризуются развитыми информационными сетями, состоящими из потоков физических и химических сигналов, связывающих все их части в единое целое. Эти потоки управляют системой.

Кибернетическую природу экосистем трудно выя вить,  потому что компоненты в них связаны в информационные сети не непосредственно, а физическими и химическими «посредниками», подобно тому как гормоны гормональной системы связывают в одно целое части организма. При этом «энергия связи» в экосистемах рассеивается и слабеет с увеличением пространственных и временных параметров.

Низкоэнергетические сигналы, вызывающие высокоэнергетические реакции, очень распространены в природе. Например, каждый год миллионы людей и животных гибнут от различных инфекций в результате заражения микроскопическими паразитами, которые составляют малую долю от общего потока энергии в экосистеме (0,01 0,1 %), То же, в растительных сообществах: очень мелкие паразитические насекомые (низкоэнергетические сигналы) могут оказывать очень сильное управляющее воздействие на общий поток энергии, резко снижая продукцию органических веществ в растениях.

Управление основано на обратной связи, когда часть сигналов с выхода поступает на вход. Это явление обычно отражают обратной петлей, через которую «стекающая вниз» во вторичную субсистему энергия вновь подается на первичную субсистему. При этом влияние этой части энергии на управление всей экосистемой гигантски усиливается (рисунок).

 

 

Вход в первичную субсистему

Выход из первичной субсистемы

Выход из  вторичной субсистемы

Вход во вторичную субсистему

 

Рисунок   . Управляющие механизмы экосистем с помощью обратной связи

Если обратная связь положительна, то значение выхода управляемой системы возрастает. Положительная обратная связь усиливает положительные отклонения и в значительной степени определяет рост и выживание организмов, хотя может приводить и к «расшатыванию» системы и нарушению равновесий. Для того чтобы осуществлять контроль, необходима отрицательная обратная связь, которая помогает, например, избегать перегрева, перепроизводства или перенаселения. Отрицательная обратная связь уменьшает отклонения на входе. Устройства для управления с помощью обратной связи в технике называют сервомеханизмами.