Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

Известные экологи

Владимир Вернадский

Эдуард Зюсс

 

Джеймс Лавлок

Структура и основные компоненты экосистем.

         Для решения глобальных экологических проблем необходимо изучить экосистемный уровень организации жизни.(Термин экосистема был предложен в 1935 г. английским экологом А. Тэнсли.) Сторонники системного подхода для обозначения природных комплексов использовали и другие термины, например, «биокосное тело» (В. И. Вернадский, 1944), геобиоценоз, холон и др. В конце ХХ века, когда была разработана общая теория систем, утвердился термин экосистема.

         Структура экосистем. Любую экосистему можно разделить на совокупность организмов и совокупность неживых (абиотических) факторов окружающей природной среды. Структура биогеоценоза приведена на рис. 6.1.

         В свою очередь экотоп состоит из климата во всех многообразных его проявлениях и геологической среды (почв и грунтов), называемой эдафотопом (от греч. почва). Экотоп это то, откуда биоценоз черпает средства для существования и куда выделяет продукты жизнедеятельности. Структура живой части биогеоценоза определяется трофоэнергетическими связями и отношениями, в соответствии с которыми выделяют три главных функциональных компонента:

1.комплекс автотрофных организмовпродуцентов, обеспечивающих органическим веществом и энергией остальные организмы (фитоценоз (зеленые растения), а также фото и хемосинтезирующие бактерии);

2.комплекс гетеротрофных организмовконсументов, живущих за счет питательных веществ, созданных продуцентами (зооценоз (животные), а также бесхлорофилльные растения);

3.комплекс организмовредуцентов, разлагающих органические соединения до минерального состояния (микробоценоз, а также грибы и прочие организмы, питающиеся мертвым органическим веществом).

         В качестве наглядной модели экологической системы и ее структуры Ю. Одум предложил использовать космический корабль при длительных путешествиях,  например, на планеты Солнечной системы или еще дальше.

         Состав экосистемы  представлен двумя группами компонентов: абиотическими и биотическими.

Абиотические компоненты это элементы неживой природы:

неорганические вещества и химические элементы, участвующие а обмене веществ между живой и мертвой материей (диоксид углерода, вода, кислород, кальций, магний, калий, натрий, железо, азот, фосфор, серо, хлор и др.).

органические вещества связывающие абиотическую и биотическую части экосистем (углеводы, жиры, аминокислоты, белки, гуминовые вещества и др.);

воздушная, водная или твердая среда обитания;

климатический режим и др.

Биотические компоненты состоят из трех функциональных групп организмов.

 

Биотические компоненты экосистемы

                                                                                                             

Продуценты

 

Редуценты

 

Консументы

                                                                                      

Фотоавтотрофы

 

Хемоавтотрофы

 

Фаготрофы

 

Сапротрофы

 

         Первая группа организмов продуценты или автотрофные организмы  (греч.сам, пища) Они подразделяются но фото и хемоавтотрофов.

         Фотоавтотрофы используют в качестве источника энергии солнечный свет, а в качестве питательного материала неорганические вещества, в основном углекислый газ и воду. К этой группе организмов относятся все зеленые растения и некоторые бактерии В процессе жизнедеятельности сами синтезируют на свету органические вещества углеводы или сахара  (СН2О)n:

СО2 + Н2О à  (СН2О)n

         Хемоавтотрофы используют энергию, выделяющуюся при химических реакциях. К этой группе принадлежат, например, нитрифицирующие бактерии, окисляющие аммиак до азотисюй и затем азотной кислоты:

СО2 + 3О2  à 2НNО2 + 2Н2О + Qr

НNО2+ О2 à 2НNО3+ Q2

Химическая энергия Q, выделенная при этих реакциях, используется бактериямй для восстановления СО2 до углеводов.

Главная роль в синтезе органических веществ принадлежит зеленым растительным организмам. Роль хемосинтезирующих бактерий в этом процессе относительно невелика,

         Вторая группа организмов – консументы (лат. потребитель) или гетеротрофные организмы  осуществляют процесс разложения органических веществ.

Эти организмы используют органические вещества а качестве источника, питательного материала и энергии. Их делят на фаготрофов (гр. пожирающий) и сапротрофов (гр. Гнилой). Фаготрофы питаются непосредственно растительными или животными организмами. К ним относятся в основном крупные животные макроконсументы. Сапротрофы используют для питания органические вещества мертвых остатков.

Третья группа организмов – редуценты (лат. возвращающий). Они участвуют в последней стадии разложения минерализации органических веществ до неорганических соединений (СО2, Н2О и др.). Редуценты возвращают вещества в круговорот, превращая их в формы, доступные для продуцентов. К редуцентам относятся главным образом микроскопические организмы (бактерии, грибы и др) – микроконсументы. Роль редуцентов в круговороте веществ чрезвычайно велика. Без редуцентов в биосфере накопились бы груды органических остатков; иссякли бы запасы минеральных веществ, необходимых продуцентам, и жизнь в такой форме, которую мы знаем, прекратилась бы.

Функционирование экосистемы обеспечивается взаимодействием трех основных составляющих: сообщества, потока энергии и круговорота веществ. Поток энергии направлен в одну сторону, часть ее преобразуется автотрофами в органическое вещество, но большая часть энергии, проходя через экосистему, покидает ее в виде тепловой энергии. В отличие от энергии, элементы питания и вода могут использоваться многократно. Размеры импорта и экспорта элементов питания варьируют в зависимости от типа, размера и возраста экосистемы. Все экосистемы в составе биосферы являются открытыми, они должны получать энергию, вещества и организмы из среды на входе и отдавать их на выходе экосистемы. Часто экосистему выделяют внутри естественных границ. Например, границей озеро служит береговая линия, а границами города административные границы. Но эти границы могут быть и условными.  Экосистема не может быть герметичной, так как ее живое сообщество не вынесло бы такого заключения.

Пространственная  структура экосистем обусловлена тем, что автотрофные и гетеротрофные процессы обычно разделены, а пространстве. Первые активно протекают в верхних слоях, где доступен солнечный свет, а вторые интенсивнее в нижних слоях (почвах, донных отложениях). Кроме того, эти процессы разделены  во времени, поскольку существует временной разрыв между образованием органических веществ растениями и разложением их консументами. Например, в пологе леса лишь небольшая частъ зеленой массы немедленно используется животными, паразитами и насекомыми. Большая часть образованного материала (листья, древесина, семена, корневища и др.) потребляется сразу, и переходит в почву или в донные осадки. Могут пройти недели, месяцы, годы или даже тысячелетия (ископаемые виды топлива), прежде чем накопленное органическое вещество будет использовано.

Следовательно, с точки зрения пространственной структуры, в природных экосистемах можно выделитъ два яруса:

Верхний, сапротрофный ярус или «зеленый пояс» Земли, который включает растения или их части, содержащие хлорофилл; здесь преобладают фиксация света, использование простых неорганических соединений и накопление солнечной энергии в сложных фотосинтезируемых веществах;

Нижний, гетеротрофный ярус или «коричневый пояс» Земли, представлен почвами и донными осадками, в которых  процессы разложения мертвых органических остатков растений и животных.

         Живые и неживые компоненты экосистем так тесно переплетены друг с другом в единый комплекс, что разделить их крайне трудно. Большая часть биогенных элементов и органических соединений встречается как внутри, так и вне живых организмов и образует постоянный поток между живым и неживым. Хотя некоторые вещества могут принадлежать только одному из этих состояний. Например, АТФазы (аденозинтрифосфотазы) встречаются только в живых клетках, ДНК (дезоксирибонуклеиновся кислота) и хлорофилл не функционируют вне живых клеток, а гумус никогда не встречается в организмах.

Это еще раз подтверждает необходимость использования при изучении экосистем двух подходов: холистического и мерологического (гр. часть). Первый предполагает измерение входов и выходов экосистемы (энергии, веществ, организмов), оценку эмерджентных свойств целого, затем, в случае необходимости, изучение ее составных частей. При мерологическом подходе изучаются свойства отдельных организмов и частей экосистемы.

Практически тот или иной подход зависит от цели исследования и степени взаимосвязанности компонентов. При сильных взаимосвязях качественно  новые (эмерджентные) свойства проявятся только на уровне целого. При мерологическом подходе эти свойства могут быть упущены. Т.е. одни и те же организмы в разных системах могут вести себя совершенно по разному, т. к. взаимодействуют с другими компонентами. Например, многие насекомые в агроэкосистемах опасные вредители, а в естественных местообитания они не опасны, т. к. их численность контролируют конкуренты, хищники, паразиты, химические ингибиторы и т. п.